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1. INTRODUCTION 

1.1. Background 

In many areas of the United States there are low volume, or reduced maintenance, 

roads with old, unsafe bridges. There is a growing need to replace these outdated structures. 

Problems arise when governmental agencies are faced with limited funding to replace the 

deficient structures. Low water stream crossings (LWSCs) can provide safe, low cost 

alternatives to bridges on law volume and reduced maintenance roads. 

A LWSC is a structure that provides a reasonable roadway crossing over a waterway. 

It is designed to be periodically overtopped with high streamflow and therefore closed to 

traffic during those flood events. A suggested criterion for crossing access is road closure 

one to three days at a time, totaling not more than 15 days a year (Coghlan and Davis, 1979). 

These structures are relatively inexpensive and are particularly suitable for low volume 

roads, streams with occasionally dry beds, or streams having shallow depths during normal 

conditions. 

The use of LWSCs can have special benefits in agricultural regions. Farmers using 

modern equipment may have problems with bridges that were not designed for farm 

machinery with widths of 18- to 20-ft, and in some cases 28-f~, with axle loads approaching 

80,000-1bs (Rossmiller et al., 1984). In these situations, LWSCs are appropriate as long as 

other site conditions are favorable. Field access, park infrastructure, primitive roads, or other 

places where low traffic levels could be expected provide suitable sites for the use of LWSCs 

as well. 
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Careful planning and design are important in LWSC project development. As part of 

the planning process, specific aspects of LWSC design should be investigated. These 

include: hydrologic, hydraulic, structural, geatechnical, and transportation design 

considerations. In this thesis, the research focus is on hydrologic and hydraulic design 

components of LWSC projects. 

1.2.4bjective and Approach 

The objective of this study is to develop a systematic approach for hydrologic and 

hydraulic design that will aid in the planning of LWSC projects. Hydrologic and hydraulic 

design guidelines and procedures will be provided, as the necessary tools, for uses by LWSC 

planners and designers to conduct LWSC analyses and design computations. 

Several steps were taken to achieve the objective. First, extensive reviews of 

previous LWSC studies was completed to provide background information on LWSCs and to 

help establish design guidelines. Next, a survey was conducted to obtain up to date 

information on the LWSC design process. The survey feedback provided additional 

information on design considerations that are currently used in the United States. Then, a 

thorough investigation of available design methodologies and techniques were explored and 

improved. Finally, hydrologic and hydraulic design procedures and guidelines, based on 

previous and present studies, were developed for LWSC design. 
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2. LITERATURE REVIEW 

2.1. Introduction 

A compilation of existing information and recent developments regarding the design 

of LWSCs was developed in this literature review. General information is provided to give 

background on LWSCs, and specific details for hydrologic and hydraulic design are also 

presented. Many different research articles have been written on the topic, but some of these 

resources are outdated. Several methods were used to attain more recent information 

regarding LWSCs in effort to update previous studies. The approaches used to obtain 

information for the literature review are described in the following section. 

2.2. Review Methodology 

A variety of resources and databases were utilized in this literature review. The 

review of existing data was completed through literature searches, interviews, and field trips. 

Publications and other useful material for literature review were obtained through library 

investigations, extensive searches on the Internet, and from contacts with different agencies. 

The literature search was conducted using various databases available at Iowa State 

University, including Water Resources Abstracts, Transportation Research Information 

Services, Applied Science and Technology Abstracts, Environmental Abstracts, and 

Dissertation Abstracts. The University's on-line library catalog program was also searched. 

Examples of key words used include: low water stream crossing, low volume roads, low cost 

water crossing, low water or submersible bridges, and stream crossing. 
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Information from interviews with engineers from selected states and from field trips 

also aided in the collection of existing LWSC data. The technical materials were reviewed 

and information was summarized. The result was a literature review that enabled a 

compilation of existing LWSC data to be made. 

2.3. LWSC Types 

There are three common types of LWSCs: unvented fords, vented fords (with pipes), 

and low water bridges. A LWSC is designed to accommodate low stream flows and allow 

safe vehicle crossing most of the time, but periodically they are subjected to high flows that 

overtop the roadway during flooding (Carstens and Woo, 1981 }. On occasion, these roadway 

crossings have to be closed until flood flows recede. In the following sections, unvented 

fords, vented fords, and low water bridges are described in greater detail. 

2.3.1. Unvented Ford 

The concept of using unvented fords goes back in history. Early settlers of this nation 

located trails so that they would be able to cross streams at locations where the streambed 

was hard and the water depth during relatively dry periods allowed for the passage of 

vehicles (Ring, 1987). The same ideas are often used for modern design and construction of 

LWSCs. 

Unvented fords are waterway crossing structures without pipes. Examples are shown 

in Figures 1 and 2. These crossings may be constructed of crushed stone, riprap, cast in place 

concrete, precast concrete slabs, or other appropriate material. They are suitable for crossing 

streams that are dry most of the year or where normal stream flow depth is less than 6-in, 
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with low velocity (Coghlan and Davis, 1979; Lohnes et al., 2001). They are commonly used 

on intermittent streams, or perennial streams with low flows (Warhol and Pyles, 1989). 

Unvented fords are placed to conform to the streambed elevation or may be raised above the 

streambed. Olen times low stream flows for Unvented fords flush to the streambed or the 

design geometry of raised, Unvented fords do not allow for fish passage. Therefore, only 

streams for which safe fish passage is not a consideration should be candidates for Unvented 

ford crossings (Warhol and Pyles, 1989). 

According to Motayed et al. (1983), an Unvented ford consists of an unsurfaced 

crossing formed by leveling the streambed for the width of the roadway. Various 

improvements can be made by adding end walls or providing more stable road surface by the 

use of asphalt or concrete surfaces, etc., as was done for the LWSC in Figure 2. Markers are 

usually provided to delineate the edge of the roadway, and the grades of the roadway 

approaches are shaped to provide a smooth transition for crossing traffic. When capital costs 

and maintenance costs are taken into consideration, Unvented fords are the least costly of the 

three types ofLWSCs. 
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Figure 1. Unvented ford in Iowa constructed with aggregate 
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Figure 2. Paved unvented ford in Iowa 
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2.3.2. Vented Ford 

Vented fords are LWSCs with built-in drainage pipes) that accommodate low flows 

without allowing roadway overtopping. Examples are shown in Figures 3 and 4. They are 

different from traditional culverts. The design of vented fords allows water to periodically 

exceed pipe flow capacity during high flows, resulting in stream flow over the roadway and 

occasional closing of the crossing. As with unvented fords, the roadway approaches are 

designed to provide acceptable grades by shaping the roadway or adjusting the elevation of 

the crossing. The pipes} or culverts placed in the structure may be embedded in earth fill, 

aggregate, riprap, or portland cement concrete. Vented fords should be considered where the 

normal depth of stream flow is calculated to exceed 6-in over a raised unvented ford 

(Coghlan and Davis, 1979; Lohnes et al., 2001). 

Careful planning is necessary when vented fords are considered. The construction of 

vented fords across a stream usually results in narrowing of the natural channel at the 

crossing site, creating flow disturbances with potential for severe erosion. This has led to 

designs that include sloped culvert entrances, sloped embankments, and splash aprons or cut-

off walls (Motayed et al., 1983). Unlike unvented fords, culverts in these structures can 

provide a passageway for aquatic life. By proper sizing and careful placement of the pipe, a 

vented ford may be designed to provide for fish passage (Warhol and Pyles, 1989). The use 

of vented fords rather than traditional culvert crossings can save money as well. With a 

vented ford, smaller size culvert can be used and the amount of fill material is reduced. The 

reduction of materials needed for construction lowers the cost of the structure (Wilent, 2002). 
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Figure 3. Vented ford with corrugated metal pipes 
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Figure 4. Vented ford reinforced with concrete 
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2.3.3. Low Water Bridge 

Low water bridges are flat-slab bridge decks, with no guard rails, that span waterways 

providing vehicle crossings at lower cost than standard bridges. They have a smooth cross-

section designed so that high water will flow over the slab during flooding events without 

damaging the structure. Examples are shown in Figures 5 and 6. Similar to high level 

bridges, low water bridges consist of the following components: a foundation to transmit the 

load from and above the structure to the natural soil below, a substructure to support the 

roadway slab and provide an adequate opening for passage of normal flow, and a 

superstructure consisting of the roadway slab, approaches, etc. (Motayed et al., 1982a). 

Low water bridges are especially suitable for drainage basins with high debris 

potentials that could obstruct vented fords or in environmentally sensitive areas where 

alteration of streambed is not acceptable (Motayed et al., 1982a). This would include those 

streams where safe fish passage is important. This type of LWSC is recommended where 

typical stream flows exceed levels suitable for the use of fords. These structures are also 

appropriate when a roadway is relatively important and the average daily traffic (ADT) level 

is high. 

The primary concerns in the design of this type of LWSC include erosion of the 

foundation soil and pavement, and lateral uplift forces of the water passing over the structure 

(Motayed et al., 1983). There are also safety concerns that should be addressed since these 

structures do not have guard rails. When looking at total cost, low water bridges are the most 

expensive of the three types of LWSCs to construct, but they are still considerably cheaper 

than conventional bridges that are only impassible during the most severe flood conditions. 
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Figure 5. Low water bridge in Iowa 
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Figure 6. Low water bridge with two spans 
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2.4. LWSC Design 

2.4.1. Design Praeess 

The design of LWSCs is a process that has not been completely formalized for the 

entire nation. Different methods are used throughout the United States and the design 

procedure varies depending on location of the project. Motayed et al. (1982a) suggested that 

well documented information on LWSC selection, design, cost, construction, and 

performance was often scarce and fragmented so it could not be readily used in design, and 

that common practice was primarily based on individual experience, judgment, and intuition. 

Since 1982, additional research has been done on LWSCs and there is more useful 

information available. There are different design and construction methods that can be found 

and the challenge is choosing techniques appropriate to use. Thus, it is important that effort 

be made to compile existing knowledge and data to develop a systematic design approach 

that can be utilized for future LWSC projects. 

LWSC construction projects involving work in or near streams may have special rules 

or procedures that need to be followed. The requirements for stream crossings vary from 

state to state and often a permit is required by local natural resources agencies (USDA Forest 

Service, 2002b). In Oregon, there is a mandatory written plan for installing stream crossing 

structures. Other states may have similar expectations, so it's necessary to investigate all 

requirements when planning LWSCs. 

General steps involved in the design of unvented or vented fords were developed by 

Rossmiller et al. (1984) and are presented in Figure 7. As shown in this flowchart, the first 

step requires analysis of the site and all of the factors associated with the decision to build a 

LWSC. The next step involves the decision for whether an unvented or vented ford would be 
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more appropriate for the site in question. Following that is hydrologic, hydraulic, structural, 

geotechnical, and transportation analysis for the LWSC selection. 

In the hydrologic and hydraulic analyses, overtopping of the LWSC structure is an 

important consideration. The overtopping frequency and duration is a function of unique 

local conditions. Overtopping discharge can be calculated once an acceptable percent of time 

for overtoppinglroad closing is decided. Duration of overtopping must be based on the 

existing physical, social, economic, and political factors for the site. 

Crossing elevations and grades are a function of channel and stream bank physical 

features, and are related to the overtopping discharge depth. Vertical curves are checked for 

a given traffic speed and headwater depth over the crossing is verified to assure safety. For a 

vented ford, number and size of pipes can be adjusted accordingly if flow characteristics over 

the initial design of a structure are not satisfactory. 

Selection of material for the crossing relates to overtopping velocity, tractive force, 

and availability of equipment and supplies in the area. Structure material should be able to 

hold up under a range of stream flows that may overtop the crossing. The final design 

considerations for LWSCs involve erosion protection. Stream bed and channel bank 

protection may be necessary. 
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DECISIQN TO BUILD 

1 Y~  DENTED FORD 
  H~ 

OVERTOPPING FREQUENCY AND DISCHARGE 

SELECTION OF NUMBER AHD SIEE OF PIPES 

SELECTION OF CROSSING GRADES AND ELE~IATIONS 

1 
NO ~ PIPE HYDRAULICS AHD ROADQAY GRADES ~  F~

AND ELEVATIONS MEET CRITERIA AND EI.Et~AT I ONS MEET CR I TER I A 

SELECTION OF CROSSING MATERIAL~S~ 

1 
SELECTION OF CROSSING 

GRADES AND ELEVATIONS 

l 
OTHER CONSIDERATIONS 

Figure 7. General design steps for a low water stream 

crossing (Rossmiller et al., 1984) 

As demonstrated by Rossmiller et al. (1984), LV~TSC design components include: 

hydrologic, hydraulic, structural, geotechnical, and transportation design. Motayed et al. 

(1982a) suggests that in order to have a successful and maintenance free ford, the experience 

gained from past performance of fords dictates that a ford should include the following: 

• Unerodible paved roadway over which vehicles can smoothly run. 

• Two end cutoff walls, one on each edge of roadway, of sufficient depth to provide 

support to the pavement and counter any subsoil flow 

• Rock filled gabion or other endwall on the downstream side to check scouring of the 

streambed. 

• Markers that enable drivers to identify the width of the roadway when flooded. 



www.manaraa.com

17 

Analysis of LWSC design components is an important part of the planning process. 

Data requirements, considerations, design components, design factors, and parameters and 

specifications are elaborated and discussed in the following sections. 

2.4.2. Data ~Zequirements and General Considerations 

Motayed et al. (1982b) lists data requirements and considerations that are essential for 

design of LWSCs. In designing small structures such as LWSCs, a complete economic 

analysis may not be necessary since the cost savings as a result of the investigation may not 

justify the effort needed for analysis. In designing a larger structure, substantial savings can 

be obtained by careful risk-based economic analysis of various designs. Data required for 

risk analysis include construction costs, site geometry and land use, hydrologic and hydraulic 

data, traffic data, and flood loss data, which can be found in Table 1. General considerations 

for the design of LWSCs can be found in Table 2. These considerations are based on the 

behavior of LWSCs during floods, their performance, and the opinions and common practice 

of experienced engineers. 
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Table 1. Summary of data requirements for LWSC design (Motayed et al., 1982b) 

Data Needed Source Where used in Analysis 
1. Construction costs 

C & M Unit Capital cost Unit prices of materials, for all 
structural components 

2. Site geometry and land use 
USGS, county, township 
Field survey 
USDA, field survey 
Field survey 

Hydraulic analysis 
Backwater computation 
Backwater damage est. 
Backwater damage est. 

Contour map 
Stream crossing sections 
Crops (kind, axea, location) 
Buildings (value, location) 

3. Hydrologic and hydraulic data 
USGS, SCS, drainage manual 
USGS, SCS maps 
USGS, state highway 

Stage-discharge 
Hydrograph 
Annual risk costs 

Gaging data (stage/discharge) 
Watershed parameters 
Flood frequency and magnitude 

4. Traffic data 

Traffic/planning units Traffic detour, cost 
estimation 

Design ADT 
Traffic mix 
Vehicle running cost 
Average occupancy 
Value of time 
Length of normal route 
Length of shortest detour route 
Average speed of traffic 

5. Flood loss data 
Local agencies, USDA, 
US Army Corps, FEMA, 
FHWA 

Risk analysis Agricultural products 
Buildings 
Bridges and components 
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Table 2. General considerations and criteria in LWSC design (Motayed et al., 1983) 

Considerations Criteria 
A. Hydrologic &Hydraulic 

1. Frequency of overtopping Less than 10 times per year 
2. Duration of overflow and repair time Less than 3 days, each occurrence 
3. Overtopping depth Less than 12-in (ADT<100} for 2-yr flow 

B. Geomorphic and Land Use 
1. Drainage area and shape Long and narrow (>3 to 4 times width in length) 
2. Stream and basin slope Steep 
3. Channel and overbank Low valley storage upstream, in a stable stream reach 

C. Structural 
General 
1. Vertical curve at dip Mild and gradual 
2. Orientation of structure Straight; skew should be avoided when possible 
3. Approach length Long, to provide sufficient distance for warning signs 

. 4. Height of pavement above streambed Less than 4-ft 
Fords 
1. Normal daily flow depth Less than 4- to 6-in 
2. Pavement material May vary from riverbed gravel to concrete 
3. Erosion protection End walls and gabion protection may be desirable, 

Wide, sloped shoulders in downstream may be helpful 
Vented Fords 
1. Pavement and fill materials Should be dense packed; heavy to withstand erosion 

and wash out. Maybe encased in concrete 
2. Vents Pipes of various materials can be used. Should be 

anchored in ground; both ends beveled to allow easy 
passage of debris. More than one vent should be used; 
but fewer lines of larger pipes is desirable 

3. Erosion protection Cut-off walls and splash aprons may be needed. Rip rap 
protection of slope may be considered 

Low Water Bridges 
1. Pavement Light and loose pavements such as bituminous or gravel 

pavements are not desirable 
2. Bridge deck 

r 

Must be heavy to withstand drag, uplift, and lateral forces 
due to overflow and upstream water. Must be secured 
to the sub-structure. Upstream and downstream edges 
should be rounded. Rounded edges with one way camber 

3. Erosion Protection Cut-off walls and impervious aprons may be desirable 
D. Signs and Markers . 

1. Signs Must have adequate warning signs 
2. Road markers Guard rails are not recommended (avoid collecting debris) 

Road markers may be desirable 
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2.5. Hydrologic Design 

The hydrologic analysis is a critical element for LWSC planning. Hydrologic design 

factors include design flow frequency and magnitude. In this phase of design, flood 

frequencies and durations that interfere with vehicle crossing are determined, and magnitudes 

of streamflow are estimated. They can be obtained by analyzing streamflow gage data if 

available at the LWSC site. If data are not available, hydrologic design can be accomplished 

with regression analysis of available flow data from nearby streams in the same region, i.e. 

empirical equations using physical properties of the watersheds or drainage areas including 

size, slope, runoff/infiltration capacity, etc. The magnitude of design streamflow, with a 

design flood frequency, is utilized in other components of LWSC design. 

Initially in hydrologic design, a decision should be made for the frequency and 

duration of flooding that will be allowed to cause road closure. This is also referred to as 

design exceedence time. As described by Ring (1987), the selection of an exceedence time 

percent is based on site conditions and road use. The need to have the road open depends on 

the type and volume of traffic and the characteristics of the users. As an example, a field 

access road could be closed more frequently than a road that serves access to a home, school 

bus, or mail route. Each site is unique and the decision on acceptable overtopping flow 

frequency and duration must be based on the existing physical, social, economic, and 

political factors for that site (Rossmiller et al., 1984). 

Once the design for overtopping and road closing frequency or duration is 

determined, the magnitude of design discharge can be calculated (Ring, 1987). Two different 

methods have been developed and used in hydrologic design and analysis for LWSCs. One 
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technique involves flow-duration curves, requiring daily stream flow data. The other is a 

conventional flood frequency method using annual maximum flow data. 

The analysis of relationships between flow magnitude-duration and exceedence 

frequency (so called flow-duration curves) requires the use of daily streamflow data. Since 

data used for these curves is from daily flow measurement, duration curves can show the 

number of days in a year when levels of stream discharge are equaled or exceeded. This 

information is very useful for LWSC design. 

The second hydrologic design method for LWSCs is the conventional flood 

frequency analysis using annual maximum flow data. It estimates the magnitude and 

frequency of instantaneous flood discharges. In traditional flood frequency analysis, 

Hydraulic Engineering Circular No. 17 (HEC-17) and the United States Geological Survey 

(USGS) method may be used (Motayed et al., 1982a). HEC-17 provides design guidelines 

for encroachments on flood plains using risk analysis. It is an economic accounting of the 

risks and potential harm associated with design plans under investigation. 

The following information is an example of conventional flood frequency analysis 

used in LWSC planning. This is a case discussed by Pienaar and Visser (1995) involving a 

2-yr flood as the design flow, i.e. the return period is two years and the annual exceedence 

probability is 50 percent. Engineers in South Africa design for the 1-in-2-yr flood, but others 

believe this is excessive, particularly for large catchment areas, relatively dry areas, or low-

order roads where unvented causeways (fords) may be acceptable. Flood analysis is carried 

out using past records. Historical river data obtained using gauging stations on rivers are 

used to determine the flood with a 2-yr recurrence interval to be utilized in the design of 

LWSCs. A design level, which provides an indication of the level of service to be expected 
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from the structure, is chosen after evaluating traffic volume, importance of the route, and 

availability of alternate routes. In the last step, the design flood is calculated using the 1-in- 

2-yr flood and a safety factor based on design level for the route. The design flood 

information is then used to develop a reasonable LWSC design. 

2.6. Hydraulic Design 

Hydraulic design is an essential component of LWSC design, considering impact of 

streamflow on the crossing structure, accommodation of flow capacity by the structure, and 

the effect a structure may have on natural conditions. In LWSC planning and design, it is 

essential to modify hydraulic design so that adverse affects from stream velocities and other 

flow characteristics on the crossing structure and foundation are lessened. In addition, if 

changes to natural stream flow are minimized, damage to the streambed, stream banks, and 

aquatic environment is less likely to be a problem. 

A reduction of hydraulic stress from flows overtopping the crossing is possible by 

keeping the difference between the upstream and downstream water surface to a minimum, 

and allowing the water through the crossing at the same rate or near the same rate as the 

stream flow until the crossing is overtopped (Rossmiller, 1984). Another consideration is 

uniformity of stream flow passing a LWSC. To help prevent stream channeling at a LWSC 

site, the crossing grade of the structure should be nearly flat (USDA Forest Service, 2002a). 

Hydraulic design parameters for LWSCs include streamflow stage or depth, 

allowable overtopping flow depth, size or dimension of structure, numbers of pipes or 

openings to accommodate design flow capacity of the structure, and pipe exit velocity. Flow 
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depths are determined from the design discharge, which is established with hydrologic design 

and geometry (width, length, and slope) of the streambed and LWSC structure. 

Vehicle and driver safety must be considered when determining overtopping flow 

depth on LWSCs. It has been suggested by previous investigators (Motayed et al., 1983; 

Rossmiller et al., 1.984), that the maximum allowable overtopping flow depth over LWSCs 

be 6-in. According to Pienaar and Visser (1995), the maximum acceptable flow depth on 

LWSCs is 4-in for supercritical and 6-in for subcritical flow. 

2.6.1. Unvented Ford 

When a ford is constructed at stream bed elevation with minimal disturbance to the 

channel cross-section, there is little effect on the flow of the stream. Therefore, less stream 

protection may be acceptable. A stage- or depth-discharge relationship for an unraised 

streambed can be obtained analytically using Manning's equation (Motayed et al., 1982 b; 

Rossmiller et al., 1984). 

The flow over a raised ford is comparable to the flow over a broad crested weir 

(Motayed et al., 1982b). When considering streambeds raised by LWSCs, flow depths may 

be computed using broad crest weir equations or empirical equations developed by 

experiments (Rossmiller et al., 1984). Erosion protection is more important both upstream 

and downstream of a raised Unvented ford due to weir flow and increased stream bed erosion 

potential. 

Exit velocity at the downstream side of the roadway embankment should be 

computed so that erosion protection measures can be selected and designed, if needed. The 



www.manaraa.com

24 

exit velocity can be calculated based on downstream flow depth in accordance with elevation 

of tail water (Motayed et al., 1982b). 

2.6.2. Vented Ford 

The hydraulic design of a vented ford is similar to that of a culvert. Available design 

tools include culvert hydraulics and flow equations (Normann et al., 1985), Hydraulic 

Engineering Circular No. 5 (HEC-5) charts (Herr and Bossy 1965; Normann et al., 1985), a 

computer modeling program called Culvert Master (Haestad Methods 1999), and culvert 

design procedures developed by Gupta (2001). FHWA's publication Hydraulic Engineering 

Circular No. 5, Hydraulic Charts for the Selection of Highway Culverts, contains useful 

design charts. These charts can be used to determine the flow capacity of culverts of various 

types and sizes under inlet and outlet conditions (Motayed et al., 1982a). The number and 

size of pipes and headwater depth can be determined from a trial and error process using this 

document (Rossmiller et al., 1984). Culvert design not only assures desired flow capacity to 

be met, but also considers flow velocity. Care should be exercised in selecting the culvert so 

that the size is large enough to limit exit velocity of the flow not to exceed about 10 ft/s to 

prevent scouring (Motayed et al., 1982b). 

In order to establish the number and size of pipes needed for design of vented fords, 

the following information is needed: location of site, watershed area, design overtopping 

duration, channel cross-section and roughness coefficient (Manning's n) of existing channel 

at site, and slope of the channel at site. When determining the number and size of pipes, 

several other items must be considered (Rossmiller et al., 1984). These include: 
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• The total width of pipes, including the spaces between them, must be less than the 

width of the existing channel. 

• The headwater elevation for the selected overtopping frequency and estimated 

discharge must be at, or slightly below, the low point in the roadway 

• The pipes can operate under either inlet control or outlet control. 

• Pipe lengths may be short, but differences in friction losses due to pipe material still 

could be significant. 

• A large difference between the low point in the roadway and the downstream water 

surface increases the erosion potential on the downstream foreslope. 

• A large difference between the low point in the ,roadway and the stream bed increases 

the volume of material needed in the crossing and, thus, its cost. 

• The minimum depth of cover over the pipes in a vented ford is one foot. 

Culvert style and structure configuration are additional details to consider. variation 

of culvert type may result in differences for hydraulic design because each style may affect 

flow of water differently. Variations in structure configuration are also important to 

recognize. Pipes in a vented ford may protrude or be flush with the foreslopes of the cross-

section. The decisions are Leff up to the designer, but it should be noted that some 

arrangements work better than others. For example, vents and embankment should be sloped 

since it is believed that the sloped entrance and embankment catch less debris and have a 

natural self-cleaning tendency during high water (Motayed et al., 1982b). Rossmiller et al. 

(1984) also suggests that a 2:1 foreslope with smoothly trimmed pipes may be self-cleaning 

on the upstream side, creating a more hydraulically efficient design. For smaller stream 
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crossings where safe fish passage is important (stream channel less than 20-ft wide), 

bottomless pipe arches or buried pipe arches are possible alternatives to bridges. A buried 

pipe arch is simply a pipe arch where the invert is covered by 1.5- to 3-f~ of native streambed 

material (Eriksson, 1983). 

A.~er a vented ford is designed, built, and put into operation, streamflow 

characteristics at the structure can change depending on the level of flow. Three types of 

flow conditions occur at a vented ford (Motayed et al., 1982b): 

• During low flow, the crossing experiences open channel flow under atmospheric 

pressure. 

• As flow level rises, low flow changes into a pressure flow when the upstream 

headwater affects the flow through openings, increasing velocity and discharge; and 

• When the roadway is overtopped, the structures experience weir flow and pressure 

flow. 

There are many possibilities for the design of a vented ford. Hydraulically, the 

culverts should be able to handle design flows and the entire structure should tolerate high 

flows that overtop the roadway. It is best if stream velocity is not increased after culvert 

addition and if erosion protection is used when turbulence threatens stream bed stability. A 

properly constructed vented ford is often able to withstand peak flows that damage or destroy 

other crossings and costs less to design and build than a conventional bridge over the same 

stream (Wilent, 2002). 
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2.6.3. Low Water Bridge 

Hydraulic design for low water bridges may be simple if streamflow is undisturbed 

by addition of a structure. In this case Manning's equation can be used for analysis. If 

streamflow disturbance is expected, the process becomes more complicated. Bridge 

hydraulics are needed for analyzing and computing flow stage or flood level, flow velocity, 

and flow depth in hydraulic design of low water bridges. In a publication by Gupta (2002), 

the HEC-2 model is described as a tool for computing head losses through bridge structures. 

The special bridge method, available in the HEC-2 model, can be used to estimate losses 

through the structure as a result of pressure flow, weir flow, or a combination of the two. 

Once typical flows and flood levels are determined for a given site, low water bridge size and 

placement height can be decided based on results from hydraulic analyses. These bridges 

should be designed to allow regular stream flows to pass under the structure with little 

disturbance, but let higher flows overtop the structure during flooding. 
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3. SURVEY 

Previous LWSC survey results were analyzed and a new survey was conducted 

throughout the United States to obtain updated information on LWSCs. A survey on LWSCs 

done by Shen (1983) was examined as an alternative for survey format and distribution. 

After considering several options, the new survey questionnaire, presented in Appendix A, 

was carefully developed and then posted on the Internet. By putting the survey on a 

webpage, increased participation was expected because the survey was convenient, 

uncomplicated, and easy to return. This procedure was also expected to reduce the time 

required for the data collection process. The website address was distributed via e-mails to 

all state departments of transportation (DOT), selected county engineers, and several 

agencies including: United States Department of Agriculture (USDA) Forest Service, Natural 

Resources Conservation Service (NRCS), Bureau of Land Management (BLM), Bureau of 

Indian Affairs (BIA), Bureau of Reclamation (BOR), and the National Association of County 

Engineers (MACE). 

Approximately 22 detailed responses to the online survey questionnaire were received 

and analyzed. This was a lower number of responses than expected, so effort was made to 

increase the amount of feedback. In attempt to get more responses, a simplified survey 

questionnaire was developed. This revised version was distributed in the same manner as the 

first survey, resulting in approximately 26 additional responses. The end result was a total of 

48 respondents proving feedback to the questions on the web based survey. 



www.manaraa.com

29 

3.1 Survey Results 

The LWSC survey contains a wide variety of questions. In conducting this survey, 

the goal was to get updated information on many aspects of the LWSC planning and design 

process from around the United States. In this analysis of the survey feedback, a focus is put 

on the information that is important to this thesis research. The following information 

summarizes responses to questions that are associated with the hydrologic and hydraulic 

aspects of LWSC design. 

Question 3 

"Based on your experience with LWSCs, please indicate factors considered and specify 

constraints in choosing and designing LWSC structures." 

The summary of responses for hydrologic and hydraulic factors considered is in 

Table 3. In this table is a list of important factors, the percent of respondents that considered 

the factors to be important, a range of constraints suggested for each factor, and average 

values for the constraints. Other factors and constraints that were suggested include: 

consideration of disturbance to the natural channel shape and modification to flow, 

acknowledgment of debris potential, and selection of a stream section with straight 

a ignment. 
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Table 3. Summary of factors and ,constraints for Question 3 

Factors 
of Respondents 
Considered 

Range of 
Constraints Mean 

Overtopping frequency (times/yr) 50 1 to 50 17 
Overtopping depth (in) 36 6 to 18 12 
Streamflow discharge (cfs) 31 0 to 1000 
Drainage area (acre) 27 3 to 500 
Streambank height (ft) 23 2 to 10 4 
Streambed slope (max) 21 2:1 to 10:1 

Question 6: 

"If your state/county/agency has built or is going to build LWSCs, 

b. Did/would you use inlet and outlet protection and erosion control? What type?" 

On this question 31 of 48 (6S%) respondents replied and confirmed that they would 

use inlet and outlet protection and erosion control when necessary. Riprap was most 

commonly suggested. Concrete aprons, concrete cutoff walls, and geotextile were also 

mentioned as effective methods. 

f. "What data would you use for hydrologic analysis, daily or annual peak flows?" 

The results for this question indicate that use of annual peak flow data for hydrologic 

analysis is more common, where: 

• 77% use annual peak flow 

• 23 %use daily flow 
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g. "What methods of hydrologic analysis does your agency employ?" 

Survey responses indicate that hydraulic analysis have been carried out using the Soil 

Conservation Service (SCS) method, USGS regression equations, HEC-HMS, TR-55, or 

rational methods. 
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4. HYDROLOGIC DESIGN 

4.1. Flood Frequency Analysis 

Instantaneous annual peak flow data have been used in the conventional flood 

frequency analysis method. In this method, flow frequency and magnitude are determined by 

analyzing data for a series of independent annual maximum floods on a given stream. A 

return period, or recurrence interval is established in the process. As discussed by Bedient 

and Huber (2002), an annual maximum event has a return period of T years if its magnitude 

is equaled or exceeded once, on the average, every ~' years. The exceedence probability is 

equal to 1 i7' Thus, a 3 0-yr flood has a 3 % probability of being equaled or exceeded in any 

given year. 

When historical streamflow data are available for the site under investigation, flood 

frequency relationships can be developed by means of various methods, which can be used to 

determine flow frequencies of given magnitudes. The empirical method is one of the 

relatively simple methods that can be used (Gupta, 2002). With the empirical method, 

magnitudes of annual maximum flows are ranked in descending order, where the largest 

streamflow is assigned a rank (r) of 1 and the lowest level of flow is given a rank equal to the 

total number of data observations (11~ available for the analysis. After the data are ranked, 

the probability (p) for each flow can be determined using a formula proposed by Weibull 

(Gupta, 2002), i. e. p = r/(N+ 1). The estimated return period for each flood level can then be 

calculated by taking the reciprocal of the probability. 
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At a site where a stream does not have historical data available, regional regression 

equations may be used to estimate flood levels and frequency. Statistical regression and 

frequency analysis techniques are combined to develop equations for predicting peak flows at 

ungaged sites based on observed streamflow records at gaged sites in the same hydrologic 

region. In order foz the regression analysis to be effective, the gaged stream location must be 

situated in an area similar to the site under investigation where there is reasonably similar 

hydrology, land use, topography, and climate. The USGS (2002) has developed and 

published regional regression equations for every state in the U.5. based on annual peak flow 

stream data collected. These equations can be used for LWSC design if a decision is made to 

use annual peak flows for hydrologic design where no stream data are available. 

When considering the use of instantaneous peak flow data for the hydrological 

design of LWSCs, the disadvantage is that the duration of flooding cannot be determined 

with this type of analysis. When LWSCs are being planned it is important to determine how 

many days a year would be acceptable for road closure due to overtopping. Since the design 

flood frequency in the traditional flood analysis method uses instantaneous flow data, i.e. 

annual maximum flows, and gives the yearly return period of a design flood or bigger one or 

the annual exceedence probability, the period of occurrence on a daily basis cannot be 

determined. Therefore, this method does not meet the need of LWSC design if acceptable 

road closing duration is considered as a design parameter. 
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4.2. Flow-duration Curves 

Daily flow data are used to develop flow-duration curves (Rossmiller et al., 1984). 

Flow-duration curves indicate the percent of time, within a certain period, in which given 

rates of stream flow (design flow) were equaled or exceeded. The percent of time stream 

flow may exceed design flow must be determined before flow-duration curves can be used 

effectively. The decision to use an exceedence time percent equal to 10 percent would mean _ 

that water should flow over the road, causing closure, an average of 3 7 days per year. The 

resulting design discharge would be Ql~%. The selection of a design discharge of QZo o would 

mean that the acceptable closing percent of time per year is 2 percent, indicating that the road 

would be closed an average of 7 days per year. The flow-duration curve charts are useful 

because they provide information for various flow rates, how often they occur, and how long 

(days in a year) to expect them. 

When historical daily data from gaged streams are available, average daily stream 

discharges can be ranked in ascending order of magnitude. The percent of time in a 

streamflow record, during which flow is equaled or exceeded, is calculated for each 

magnitude of flow. The data can then be used to generate flow-duration-frequency curves 

which can be utilized to determine the LWSC design flow for a given acceptable time of road 

closure in a year. 

If stream discharge and duration information are not available at stream crossings and 

no recorded data exist, an empirical approach is required. Streamflow records are typically 

available from the USGS for streams with gauging stations. This information can be used to 

make streamflow estimations for streams without gauges. In some states the data have been 

statistically analyzed on a regional basis and regression equations developed (Ring, 1987). 
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Flow duration information at ungauged sits in Iowa can be found in Rossmiller et al. 

(1984). Flow-duration-area equations for ungauged streams were developed from flow data 

at gauged sites by dividing Iowa into three different hydrological regions based on 

geomorphology and hydrology, shown in Figure 8 (Rossmiller et al., 1984). The following 

equation can be used to analyze ungauged sites in Iowa: 

Qe = aAb (~) 

where Q =discharge (cfs), A =drainage area (mi2), e = exceedence time percent, i.e. duration 

of road closure per year due to overtopping, and a, b =regression coefficients found in Table 

4. If no regional equations have been developed in the area under investigation, an 

alternative is to use adjacent flow-duration curves from a nearby stream with similar 

conditions (Ring, 1987). 

Figure 8. Hydrologic regions of Iowa for discharge estimation (Rossmiller et al., 1984) 
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Table 4. Regional regression coefficients for equation (1) 

Exceedence 
Time 
e, % 

Region I 
--

a b 

Region II 

a b 

Region III 

a b 
50 0.17 1.05 0.06 1.09 0.02 1.24 
25 0.52 1.01 0.24 1.06 0.04 1.25 
10 1.37 0.98 0.91 1.00 0.15 1.19 
5 2.5 8 0.96 2.26 0.95 0.3 3 1.15 
2 6.78 0.90 6.78 0.90 1.23 1.06 
1 13.5 0.85 13.5 0.85 3.56 0.96 

As mentioned earlier, Coghlan and Davis (1979) suggested that total duration of road 

closure should not exceed 15 days in a year, which is approximately a 4 percent exceedence 

time. It should be recognized that duration of road closure is highly dependent on site 

specific factors so the duration could vary from project to project. In some situations, less 

than 15 days of road closure in a year may be desirable while more than 15 days could be 

suitable at another location. Therefore, lower range exceedence probabilities, less than 10 

percent, are presented for use in LWSC planning and design. 

In this thesis research, tools presented by Rossmiller et al. (1984), have been 

elaborated to make them more convenient to use for LWSC design in Iowa. Table 4 was 

expanded to provide values for regression coefficients a and b for exceedence times less than 

10 percent. These new values can be found in Table 5 where the values in bold are from 

Rossmiller et al. (1984), and the italicized numbers represent new values added. 
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The new values listed in Table 5 were generated by plotting and analyzing the 

coefficient values calculated by Rossmiller et al. (1984). Trend lines were added to fit 

plotted data. Equations for the trend lines could then be used to estimate new coefficient 

values at various exceedence probabilities. Figure 9 shows the plotted data for regression 

coefficient a, with trend lines and respective equations. Regression coefficient b has a linear 

trend, so it was not necessary to plot. 

Estimation for Coefficient a 
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Table 5. New regional regression coefficients for estimating 

duration of flows in Iowa 

Exceedence 
Time 
e, % 

Region I 

a b 

Region II 

a b 

Region III 

a b 
50 0.17 1.05 0.06 1.09 0.015 1.24 
25 0.52 1.01 0.24 1.06 0.04 1.25 
10 ~ 1.37 0.98 0.91 1.00 0.15 1.19 
9 1.4 7 0.98 0.99 0.99 0.17 1.18 
8 1.66 0.97 1.12 0.98 0.19 1.17 
7 1.9D 0.97 1.33 0.97 0.23 1.17 
6 2.22 0.96 1.61 0.96 0.28 1.16 
5 2.58 0.96 2.26 0.95 0.33 1.15 
4 3.34 0.94 3.10 D. 93 0. SO 1.12 
3 4.46 0.92 4.25 0.92 0.74 1.09 
2 6.78 0.90 6.78 0.90 1.23 1.06 
1 13.50 0.85 13.5 0.85 3.56 _ 0.96 

Equation (1) was used with data from Table 5 to generate useful charts for LWSC 

hydrologic design in Iowa. With these charts, an exceedence time percent can be chosen for 

a site with known drainage area to determine the design discharge. Figures 10, 1 1, and 12 

are charts that were generated for each of the three hydrologic regions in Iowa. Similar 

charts can be made for other regions with use of regression equations and available daily 

streamflow data. 

In summary, the flow-duration method has advantages over the traditional flood 

frequency analysis method for hydrologic design of LWSCs. The design flow frequency or 

exceedence time percent developed from daily flow data, indicate not only how often a 

design flood or larger one would occur, but also how long the flood would last. 
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Iowa Region II 
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Iowa Region III 
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5. HYDRAULIC DESIGN 

5.1. Unvented Fords 

5.1.1. Flow Regimes and Overtopping Flow Depth 

In research by Chaudhry (1993 ), it was determined that for a step rise, 0z, on the 

channel bottom, water surface elevation over the step drops if the upstream flow is 

subcritical, while the overtopping flow depth increases if the flow upstream of the step rise is 

supercritical. An equation was derived with assumptions that the pressure distribution is 

hydrostatic and there are no losses, which can be explained by the following (Chaudhry, 

1993): 

(2) 

where Fr is the Fronde number, dz/ax represents the raised LWSC height, and dy/dx indicates 

the change in flow depth. The Fronde number can be determined using 

F, —  V 
y~g 

(3) 

where V is the stream velocity and yi is the existing headwater depth. 

Unvented fords can be elevated above the streambed and it can be assumed that dz/dx 

is always positive when a crossing is raised. This implies that (F,2-1) and dy/dx are either 

positive or both negative values. Thus, we can see that: 
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• F, < 1 (subcritical), dy/dx < 0, indicating that depth decreases 

• F, > 1 (supercritical), dy/dac > 0, indicating that depth increases 

This concept is very important for the hydraulic design of LWSCs, particularly when 

choosing between .an unvented ford on the streambed and a raised unvented ford. The 

existing conditions should be evaluated to determine if the flow of the stream is subcritical or 

supercritical for the design flow Q e . Iri most natural rivers the streamflow is subcritical. 

However, there are unique circumstances in which supercritical flow can exist. Since flow 

regime is an important parameter in LWSC design, especially for unvented fords, the state of 

existing flow should always be analyzed. 

According to Pienaar and Visser (1995), the maximum acceptable flow depth on 

LWSCs for safe vehicle passage is 4-in for supercritical flow and 6-in for subcritical flow. If 

design flow depth is less than or equal to 6-in, an unvented ford on the streambed is 

acceptable under subcritical flow conditions. If the subcritical flow depth for the design 

discharge is more than 6-in, the LWSC height may be raised. This will cause a decrease in 

the overtopping depth such that 6-in or less may be achieved. Methods that can be used to 

determine if raising an unvented ford will result in overflow depth less than or equal to 6-in 

will be discussed later in this report. 

If the design flow depth is less than or equal to 4-in under supercritical flow 

conditions, an unvented ford on the streambed is acceptable. Under supercritical flow 

conditions it is not recommended to raise an unvented ford because the result is increased 

water surface elevation over the LWSC compared to the upstream water surface. 



www.manaraa.com

44 

The specific energy is measured with respect to the channel bottom and is defined as 

the sum of the depth, y, and velocity head, V2/2g (Gupta, 2002). According to Modi and Seth 

(1991), there is a limit up to which the specific energy for a given discharge can be reduced 

by increasing the height of the raised structure, ~z. This means there is a limiting or 

maximum ~z at which the specif c energy at a raised unvented ford is equal to the minimum 

specific energy, E~, for the upstream discharge. The minimum specific energy occurs when . 

the critical depth, y~, of flow is attained. If 0z is increased beyond the maximum value then 

the upstream water level and flow rate are influenced, choking the stream. When a stream is 

choked, the upstream water level is lifted and the flow discharge is reduced. Assuming there 

is no loss in total head when stream flow passes a structure, the following equation can be 

used: 

El = E~ + ~zm~ (4) 

where E~ is the specific energy upstream, E~ is the minimum specific energy for a given 

discharge, and t~zm~ is the maximum height of a raised LWSC that is needed to achieve 

critical flow conditions. 

Analyses using hydraulic principles were performed to determine how overtopping 

flow depth varies when the height of a raised unvented ford is changed. Table 6 shows 

results for various stream channel properties and levels of stream flow. As shown in the 

table, when Oz < Ozm~, overtopping flow depth is greater than critical flow depth, thus 

allowing subcritical flow over the crossing. When 0z = Ozm~, critical flow depth crosses the 

structure. Finally, if 0z > ~►zmaX, the overtopping flow depth is less than critical flow depth 

causing supercritical flow over the structure. 



www.manaraa.com

45 

Table 6. Variation of overtopping depth, y2, with structure height, ~z 
Constants ~z Yz 
Q=150 cfs 2.00 4.04 
n=0.04 2.50 3.40 
w= 8 ft 3.02 2.22 
S=0.002 3.20 2.12 
~Zm~= 3.02 ft 3.80 1.72 
yc=2.22 ft 4.50 1.24 
Q=150 cfs 0.40 1.21 
n=0.04 0.50 1.07 
w=40 ft 0.62 0.76 
S=0.002 0.70 0.70 
~Zm~= 0.62 ft 0.80 0.64 
yc=0.76 ft 1.00 0.50 
Q=1500 cfs 4.00 9.42 
n=0.04 5.00 8.06 
w=20 ft 6.03 5.58 
S=0.002 6.50 5.26 
~Zm~=6.03 ft 7.00 4.92 
yc=5.58 ft 7.50 4.60 
Q=1500 cfs 1.5 5.56 
n=0.04 2 4.82 
w=40 ft 2.49 3.52 
S=0.002 2.7 3.36 
~ZR,~=2.49 ft 3.5 2.84 
yc=3.52 ft 4 2.5 
Q=150 cfs 0.30 2.92 
n=0.04 0.40 2.72 
w= 8 ft 0.53 2.22 
S=0.01 0.60 2.18 
L1Zm~=0.53 ft 0.70 2.10 
yc=2.22 ft 1.00 1.90 
Q=150 cfs 0.05 1.54 
n=0.04 0.10 1.42 
w=20 ft 0.15 1.20 
S=0.01 0.20 1.16 
~Zm~= 0.15 ft 0.30 1.10 
yc=1.20 ft 1.00 0.64 
Q=1500 cfs 0.50 6.62 
n=0.04 0.60 6.34 
w=20 ft 0.75 5.58 
S=0.01 0.80 5.54 
~Zm~=0.75 ft 1.00 5.40 
yc=5.58 ft 2.00 4.74 
Q=1500 cfs 0.10 4.12 
n = 0.04 0.15 3.94 
w=40 ft 0.22 3.52 
S=0.01 0.30 3.46 
~Zm~= 0.22 ft 0.40 3.40 
yc=3.52 ft 1.00 3.00 
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The location of critical flow occurs at the highest point of a raised streambed, when it 

is a rounded bump step rise (Chaudhry, 1993). Since the geometry of a ford has a flat top, 

the Location of critical flow on the structure can be variable. For a given design flow, critical 

flow, y~, occurs approximately at the center of the structure when ~z = dzm~. When ~ < 

~zm~, the location may move downstream from the center of the LWSC, while when dz > 

~zm~, it moves upstream from the center of the LWSC. Therefore, when Ozm~ is used for 

LWSC design and 6-in depth as a design constraint, we can assume that the 6-in design 

overtopping depth will occur near the center of the crossing. If streamflow is less than 

design flow after the structure is built, the design overtopping depth location may move 

upstream from the center of the crossing and the depth over the crossing would be less than 

the design overtopping depth. 

The concept of using a maximum height, ~zm~, for a raised LWSC to achieve critical 

flow over the crossing can be a very useful tool for the hydraulic design of these structures. 

It will be used as a part of the design methodology to be described in the next sections. 

5.1.2. Hydraulic Principles 

If an unvented ford is to be placed conforming to the streambed with minimum 

disturbance to channel cross section, Manning's equation can be used for analysis. This 

equation is written as: 

1.486 ARziss iiz 
Q= n 

~s~ 
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where Q =discharge (in English units), A = cross-sectional area of channel, R =hydraulic 

radius, S =channel slope, and n =Manning's roughness factor. 

The roughness coefficient (n) is a function of channel material, degree of irregularity 

in channel cross-section surface, variation in cross-section along the channel's length, effect 

of obstructions, height of vegetation, and degree of channel meandering (Rossmiller et al., 

1984). Manning's equation can be used in this form, assuming a rectangular cross section: 

1.486(y~w)5 ~3 o.s 
QQ — ~n(w+2Y,)Z ~s S (6) 

where Qe is the design discharge from hydrologic analysis, n is the roughness coefficient, S is 

the channel slope, w is the channel width, and yl is the depth of flow associated with Qe. For 

very wide and relatively shallow channels, for example 

w >_ 10 
.YI 

Manning's equation can be simplified and rearranged to get a new equation. Equation (7) 

provides a quick method for estimating the headwater depth, yl. 

J'i = n ~e 
1.486w~So.s 1 

i 
(~) 

The computed yl value can then be compared with the allowable maximum flow depth to 

determine if an unvented ford would be an acceptable option. If the stream under analysis 

doesn't have a wide channel, i.e. when 

w <10 
J', 
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Manning's general equation must be used to solve for yl. With substitution, Manning's 

equation can be written as the following: 

u'~Y~-zs~+2~Y1-~.s~_ 1.486~s~,2sso.~s

n~sQ ~s
e 

(8) 

Using Equation (8), the headwater depth, y~, can be determined through trial and error or by 

use of a mathematical equation solver. This depth can then be compared to the maximum 

allowable overflow depth. 

~ Vz/2 ~ ~ ~ 
g 

Qe Y1 x v v 
YZ

Energy Grade Line 

Datum 

L 

Figure 13. Diagram for a raised unvented ford 

If a raised unvented ford is going to be designed, as shown in Figure 13, the 

overtopping flow depth must be determined differently. In order to find y2, the overtopping 

depth, the energy equation must be used. The general energy equation from Gupta (2001), is 

2 2 

+ vl + z = + 
v2 

+ z + h .v~ 2 ~ y2 2 2 f g g 
(9) 



www.manaraa.com

49 

Assuming no losses, hf  = 0, the general energy equation can be modified with substitutions to 

get the following equation: 

y, +SL+ 
/ ^ 2 

~1 

\ 2 ~ Z y12 ~ 

- y2 + /  Q z ~ 
2 

~ 2 ~ Zy2 2 / 

where y~ is the upstream flow depth or headwater depth, which is calculated using Equations 

(7) or (8), y2 is the overtopping flow depth, QI and Qz are the upstream and downstream 

flows respectively, which are assumed to be equal, w is the width of the stream, and Oz is the 

height of the raised LWSC. In this equation we can assume that the slope is small so the SL 

term of the equation can be neglected. Rearranging this equation we get 

1 Zgw 2
2 2 

y2 ~e 

and 1= 

y, + 

2 2gw 
2 yl + 

Qe 

~ 2 
Qe 

2~2y, \ ~ 

— ~ — y2 

/ ^e 2 \ ~ 

  — ~ y2 
~2~ z Y~ Z ~ , 

2 

2~ 2y23 -

Q Z 
e 

~iz~ 

Equation (12) is solved for y2, the overtopping flow depth, based on design flow, Qe, 

headwater depth, yl, raised LWSC height, Oz, and the width of the stream, using a 

mathematical equation solver or trial and error methods. 

All of the modified Manning's equations listed above were used to analyze natural 

stream conditions including a wide range of flow discharges, stream slopes, and channel 

widths, while assuming Manning's n to be 0.04 for natural channels. The results from using 
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the varying parameters were used to find a relationship between the change in structure 

height, ©z, and the change in overtopping depth as a result of raising the streambed for a 

LWSC. 

~ V'zl2
 ~ n n 

g 

yl 
Ez - E~ 

Energy Grade Line 

YZ - y~ 

D Z = OZ~ 

Datum 

L 

Figure 14. Diagram for a raised unvented ford with a height of L~zm~ 

The first analysis was for the conditions when a structure height is equal to dzrn~, 

thus creating a state of critical flow over the crossing where y2 = y~ and E2 = E~, as shown in 

Figure 14. Under critical flow several relationships have been derived, assuming a 

rectangular channel (Chaudhry, 1993; Modi and Seth, 1991). One important equation is 

J'~ = (13) 

where y~ is the critical flow depth and q = Q~`w. Using this as a design parameter helps to 

simplify the hydraulic design process. For example, a design flow from the hydrologic 

analysis can be used to find a critical flow depth, y~, using Equation (13). If the critical flow 

value exceeds the maximum allowable overtopping depth, then an unvented ford should not 
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be considered for the given situation. If the critical flow depth is less than or equal to the 
---

maximum allowable flow depth, and a raised unvented ford is desired, then 1~zm~ should be 

determined. Equations (4) and (10) can be used to find L~zm~ as shown in the following: 

or 

max 
— El Ec

\L max 

l ? 1 l 2 \ 

.yl + 2 yc +  2
t 2gA, ~ ~. 2gA2 ~ 

where Al = yl w ,and A2 = yew , and Q is assumed to be constant. 

As described by Chaudhry (1993), y2/E2 = 2/3 when ~1z is maximum and critical 

conditions exist. When an assumption is made that total head remains constant, E2 =Has 

shown in Figure 14. Substitutions can be made so that under these assumptions: 

yc 

H 3 
(16) 

An analysis was performed to develop a relationship between the ratio y2/Hand Oz 

when the raised structure height is less than the maximum value, Ozm~. In this investigation, 

data for natural stream conditions under subcritical flow were used. These data include: mild 

to steep channel slopes (0.002- to 0.2-fI/f~), low to high values of stream discharge (1.5- to 

3000-cfs), and narrow to wide streams (5— to 50-fI). 

Assuming that the subcritical design flows, slopes, and widths of the streams where 

known, the overtopping depths for different values of ~ were calculated using Equation 

(12). This analysis showed that as the height of the crossing, 0z, is increased from 0-f~ to the 

maximum ~z for the design flow, the ratio of y2/H varied from 1.0 to 0.667. These findings 
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agree with the concept that under subcritical flow conditions overtopping flow depth 

gradually decreases as the height of the step on the streambed increases. Results for the ratio 

y21H, based on hydraulic principles, are presented in Table 7, column 3 . 

5.1.3. Examination of Laboratory Results 

The overtopping flow depth on a raised unvented ford, y2 as shown in Figure 13, can 

be computed with an empirical equation for a broad crested weir (Rossmiller et al., 1984). 

Laboratory flume experiments conducted by Barrett (1984) resulted in a modified broad 

crested weir equation that can be used for LWSC analysis. The modified equation is as 

follows: 

H= 0.3 8 9 Q 0.599 L —0.493 
e o 

The laboratory investigation also provided results that led Barrett (1984) to make an 

assumption that the overtopping flow depth could be approximated using: 

y2 = o.6x ~ 1 g~ 

Combining Equations (17) and (18), 

y2 = 0.23 3 Q 0.599 L o —0.493 (19) 

where Lo is the length of LWSC perpendicular to flow, and QQ is design discharge from 

hydrological analysis. Equation (19) can be used to calculate the depth of water over the 

raised ford for a given design discharge and length of LWSC, which is equal to the width of 
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the stream. Once y2 is calculated, it can be compared with the acceptable overtopping flow 

depth. The laboratory experiments demonstrated that LWSC height, ~, does not 

significantly affect the discharge-depth relation. Therefore, it was assumed that 0z is a 

flexible design parameter. 

Based on the results from the laboratory experiments, Barrett (1984) and Rossmiller 

et al. (1984), have concluded that the change in ~ does not have significant impact on 

discharge-depth relations and that the ratio y2/H is a constant (0.6). To examine these 

findings, an analysis was conducted using the concepts discussed in section 5.1.1. flow 

regimes and overtopping flow depth and section 5.1.2. hydraulic principles. 

The analysis was performed with natural stream data under subcritical flow 

conditions, similar to what were used for the energy equation analysis. With a given design 

flow, slope, and stream width, H could be calculated using Equation (17), developed by 

Barrett (1984). The overtopping depth, y2, was calculated with the same stream properties 

using methods discussed in section 5.1.2. Once I~ and y2 were calculated for a variety of 

stream conditions, comparisons could be made. Results for the ratio y2iH, based on 

equations developed by Barrett (1984), are presented in Table 7, column 4. These results 

show that under natural conditions the ratio y2/H had a variety of values ranging from less 

than 0.6 to values greater than 2.0, depending on the magnitude of stream flow and the height 

of the raised crossing, 0z. The findings are different than results from the analyses using 

hydraulic principles. 



www.manaraa.com

54 

The discrepancy between the laboratory findings and the analysis of natural streams 

using the hydraulic principles indicates that the lab experiments had limitations and the 

findings may only be applicable to lab conditions, not natural streams. The headwater 

remains constant in a natural river. In conducting a study using a laboratory flume, with 

limited length, it is a challenge to recreate natural stream conditions. In this case, it would 

have been difficult to control the headwater depth. Due to the short length of a flume, 

backwater elevation in response to a raise in the step height on the channel bottom was 

difficult to keep constant. The changing headwater depths as a result of changing ford 

heights would make the laboratory findings irrelevant for natural streams. 

The equations developed by Barrett (1984) where analyzed for critical conditions. In 

the investigation the LVVSC height was dzm~ and the overtopping flow was equal to the 

critical flow depth. Using the critical condition parameters, a pattern of variation was found 

for the ratio y2/H. 

Table 8 shows the different values for y2/H, when the crossing height is dzm~., based 

on variations in stream flow and channel properties. In this table, the low range y2/H ratios 

for each flow magnitude, Qe, are associated with narrow streams. The high range ratio 

values are for streams with wide channels under the same conditions. The slope of the 

stream had very little impact on the differences in value. As shown in the table, y2/H = 0.6 

under specific conditions when 0z is maximum. Therefore, assumptions made in research by 

Barrett (1984) are applicable in certain circumstances. 
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Table 7. Change in y2/~ for az < ~zn,~ 
1 2 3 4 

Constants ~z (ft) 
Hydraulic Principles 

y2/H 
Empirical Equation 

y2iH 
Q=25 cfs ~ 
n=0.04 
w=8 ft
S=0.002 
~zm~=0.73 ft

0.70 0.77 0.83 
0.60 0.86 1.01 
0.50 0.90 1.16 
0.30 0.94 1.41 
0.10 0.96 1.64 

Q=25 cfs 
n=0.04 
w=20 ft
S=0.002 
~zm~ 0.35 ft

0.34 0.73 . 0.66 
0.25 0.84 0.90 
0.15 0.93 1.15 
0.10 0.94 1.41 
0.05 0.96 1.34 

Q=25 cfs 
n=0.04 
w=40 ft
S=0.002 
Ozm~=0.24 ft

0.23 0.73 0.59 
0.20 0.84 0.74 
0.16 0.91 0.88 
0.12 0.94 0.99 
0.08 0.94 1.08 

Q=150 Cfs 
n=0.04 
w=8 ft
S=0.002 
~zm~=3.02 ft

2.70 0.84 1.09 
2.50 0.88 1.97 
2.00 0.92 1.43 
1.00 0.96 1.84 
0.50 0.97 2.01 

Q=150 cfs 
n=0.04 
w= ft
S=0.002 
~zm~=1.03 ft

0.95 0.79 0.84 
0.70 0.89 1.06 
0.50 0.92 1.20 
0.30 0.94 1.23 
0.10 0.95 1.46 

Q=150 Cfs 0.61 0.72 0.65 
n=0.04 0.50 0.84 0.84 
w=40 ft 0.40 0.89 0.95 
S=0.002 0.30 0.92 1.06 
~zm~=0.62 ft 0.20 0.94 1.15 
Q=300 cfs 5.00 0.88 1.28 
n=0.04 4.00 0.93 1.57 
w=8 ft 2.00 0.97 2.09 
S=0.002 1.00 0.97 2.33 
OZm~ 5.91 ft 0.50 0.98 2.47 
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Table 7. (Continued) 

1 2 3 4 

Constants 
_ 

~z (ft) 
Hydraulic Principles 

y2/H 
Empirical Equation 

y~/H 
Q=300 cfs 
n=0.04 
w=20 ft
S=0.002 
~Zm~=1.64 ft

1.50 0.80 0.89 
1.20 0.88 1.07 
0.90 0.92 1.22 
0.60 0.93 1.35 
0.30 0.95 1.48 

Q=300 cfs 
n=0.04 
w=40 ft
S=0.002 
L1zm~ 0.91 ft

0.90 0.72 0.68 
0.70 

~ 
0.86 0.90 

0.50 0.90 1.04 
0.30 0.93 1.17 
0.10 0.95 1.30 

Q=1500 cfs 
n=0.04 
w=20 ft
S=0.002 
~zm~ 6.08 ft

6.00 0.72 0.86 
4.00 0.91 1.33 
3.00 0.93 1.51 
2.00 0.95 1.67 
1.00 0.96 1.82 

Q=1500 cfs 
n=0.04 
w=40 ft
S=0.002 
~zm~=2.48 ft

2.40 0.74 0.79 
2.00 0.84 0.95 
1.50 0.89 1.10 
1.00 0.92 1.23 
0.50 0.94 1.35 

Q=150 cfs 
n=0.04 
w=8 ft
S=0.01 
~zm~ 0.53 ft

0.50 0.73 0.87 
0.40 0.79 0.97 
0.30 0.82 1.04 
0.20 0.85 1.10 
0.10 0.87 1.15 

Q=150 cfs 
n=0.04 
w=20 ft
S=0.01 
Ozm~ 0.15 ft

0.14 0.71 0.72 
0.12 0.75 0.77 
0.08 0.79 0.83 
0.06 0.80 0.85 
0.04 0.83 0.88 

Q=300 Cfs 
n=0.04 
w=8 ft

1.00 0.75 0.95 
0.80 0.81 1.06 
0.60 0.84 1.14 

S=0.01 0.40 0.86 1.21 
~zm~=1.10 ft 0.20 0.88 1.28 
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Table 7. (Continued) 
1 2 3 4 

Constants ~z (ft~ 
Hydraulic Principles 

y2/H 
Empirical Equation 

y2/H 
Q=300 cfs 
n=0.04 
w=20 ft
S=0.01 
DZm~=0.21 ft

0.20 0.70 0.75 
0.15 0.76 0.82 
0.10 0.79 0.87 
0.05 0.81 0.90 
0.01 0.82 0.93 

Q=1500 cfs 
n=0.04 
w=8 ft
S=0.01 
~Zm~ 8.00 ft

7.90 0.70 0.98 
7.00 0.81 1.20 
5.00 0.89 1.47 
3.00 0.93 1.70 
1.00 0.95 1.90 

Q=1500 cfs 
n=0.04 
w=20 ft ~ 
S=0.01 
DZm~=0.75 ft

0.74 0.67 0.79 
0.50 0.77 0.94 
0.30 0.80 1.00 
0.10 0.83 1.05 
0.05 0.84 1.06 

Q=1500 cfs 
n=0.04 
w=40 ft
S=0.01 
DZm~=0.22 ft

0.21 0.68 0.71 
0.17 0.73 0.77 
0.13 0.75 0.79 
0.10 0.76 0.81 
0.07 0.77 0.83 

Q=3000 cfs 
n=0.04 
w=20 ft
S=0.01 
DZm~=1.65 ft

1.60 0.69 0.86 
1.40 0.75 0.94 
1.20 0.78 0.99 
1.00 0.80 1.03 
0.80 0.82 1.07 

Q=3000 cfs 
n=0.04 

0.30 0.69 0.76 
0.25 0.72 0.80 

w=40 ft 0.20 0.74 0.83 
S=0.01 0.15 0.76 0.85 
DZm~=0.33 ft 0.10 0.77 0.87 
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Table 8. Values for y2/H when t~z is maximum 

Qe y~ Range for y2IH 
!ow flow yc < 0.5-ft 0.45 - 0.60 
LWSC design flaw yc = 0.5-ft 0.55 - 0.65 
high flow yc > 0.5-ft 0.60 - 0.75 
extreme flow yc » 0.5-ft 0.80 - 0.95 

S. ~. 4. Unvented Ford Design Procedure 

The first step in designing an Unvented ford requires estimation of the design flow, 

Qe, as described in section 4. Next, flow regime should be analyzed to determine if the 

stream is under subcritical or supercritical flow conditions for the design flow. If the stream 

flow is subcritical: 

1. Find the headwater depth, yl, for the design flow using Equation (7) or (8). 

a. If yl _< 6-in, the Unvented ford can be constructed on the streambed. 

b. If yl > 6-in, a raised Unvented ford should be considered. 

2. For a raised Unvented ford calculate the critical flow depth, y~, using 

Equation (13 ). 

a. If y~ <_ 6-in, the height of the crossing should be raised to ~zm~. 

b. If y~ > 6-in, do not use an Unvented ford and try considering a vented ford. 

3 . For a raised Unvented ford calculate dzm~ using Equation (15). 

4. The overtopping depth on a raised Unvented ford is checked using Equation (12) 

or Equation (19) when the structure height is azm~. 

5. The flow velocity at the crossing is calculated from the following equation: 
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QVz = yZL (Zo) 

where V2 =flow velocity at the crossing, Q =stream discharge, yz= overtopping 

flow depth, and L =length of overflow section. 

If the stream flow is supercritical: 

1. Find the headwater depth, yl, for the design flow using Equation (7) or (8). 

a. If y, < 4-in, the unvented ford can be constructed on the streambed. 

b. If y, > 4-in, do not use an unvented ford and consider a vented ford. 

2. The exit velocity, V2, can be calculated using Equation (20). 

5.2. Vented Fords 

Vented fords should be considered when the design flow overtopping depth for an 

unvented or raised unvented ford exceeds the maximum allowable overflow depth. Vented 

fords are more appropriate for these situations because pipes built into the structure permit 

stream flow to pass through the structure. This allows them to handle larger stream 

discharges while meeting maximum allowable overtopping depth criteria. 

5.2.1. Design Discharge 

The design flow for a vented ford is a combination of culvert flow and overtopping 

flow at the structure. The pipe in vented fords is designed to have a flow capacity of Q,, such 

that: 
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Qv Qe — Qtop t21) 

where, Qe is the total design flow from hydrological analysis, and Qtop is the flow over the 

ford. Overtopping should be 0 to 6-in, but not exceed this level for the design flow. The 

following information will discuss two different methods for determining the overtopping 

flow depth, Qtop, so that the culvert design flow can be estimated and pipe size chosen for the 

structure. 

5.2.2. Modred Broad Crested Weir Equation 

Flow over a vented ford can be calculated from rearranging Equation (17), 

Qto = 4.83 Loo.s23 U  1.67 (22) 
P 

IZ 

Considering H = y2/0.6, when the pipe cover is raised to Ozm~, and assuming a maximum 

allowable water depth, y2, of 6-in over the ford, H becomes 0.833-ft and Equation (22) can be 

rearranged as 

Qto = 3.5 3 8 Lo 0.823 (23 ) P 

where the overtopping flow, Qtop, can be estimated when the length of structure is known. 

5.2.3. Critical Flow Equation 

Using the relationships determined from Equations (9) and (13), and combining the 

equations can give a new expression that can be used to determine overtopping depth, Qtop• 

The equation is given as: 
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or 

1. S y~ — y~ + 
2 ~ Qtop 

2gw 2 y~ z 
~ ~ 

Qto — .yc3~
2

F 

(24) 

(25) 

when overtopping flow depth is equal to the design flow critical depth in the situation where 

the height of the pipe cover is OzmaX. 

When comparing the value of Atop determined using the empirical equation (Barrett 

1984) to the Qtop estimated using the critical flow equation there is no significant difference 

between the values of calculated flows, if 0z is maximum. This means that when 6-in is used 

as the overtopping flow depth, and the pipe cover, Co, is equal to L1zm~, either equation can 

be used effectively to obtain a value for the overtopping flow. It should be noted that 

culverts need a minimum cover of 1-f~ to prevent loading damage to pipes (Lohnes et al., 

2001). Therefore, at least 1-fI of cover should be used for a vented ford, even if ~zm~ is less 

than 1-f~. 

S. 2.4. Analysis of Flow Conditions 

The hydraulic design of a vented ford is similar to that of a culvert. In culvert 

hydraulics and flow equation derivation and analysis (Normann et al., 1985, Herr and Bossy 

1965; Haestad Methods 1999; Gupta 2001), flow conditions of a culvert are usually divided 

into two categories: inlet control and outlet control. The entrance of a culvert can be above 

the water or submerged. When the inlet is submerged, the pipe is partially full under inlet 

control while the barrel is completely full under outlet control (Gupta 2001). This may imply 
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that a larger size is required for a culvert that is operating under inlet control as compared 

with outlet control. 

In a vented ford design, determination of number and size of pipes in a vented ford 

design is a trial and error process. In the design approach used by previous investigators, it 

was first assumed that the flow is governed by inlet control and then the design is checked 

for outlet control. When the inlet of a culvert is submerged, a larger size may be required 

under inlet control. Therefore, the design of a vented ford with a submerged entrance for 

inlet control flow may not need to be checked for outlet control; and the design procedure 

can be significantly simplified. An analysis is performed in this study to examine the validity 

of the assumption that inlet control flow condition requires a larger size of culvert barrel. 

Inlet Control Hydraulics 

Inlet control means that the discharge capacity of a culvert pipe is controlled at the 

entrance by headwater depth, yl, and entrance geometry, including barrel shape and cross-

sectional area, and the type of inlet edges. Under the assumption of inlet control, culvert 

barrel friction and other minor losses can be neglected. The practical significance of inlet 

control is that flow capacity of a culvert can be increased by improving entrance condition. 

When the inlet is submerged, the pipe is partially full under inlet control. 
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L 

Figure 15. Diagram for a vented ford under inlet control 

Datum 

An example of a vented ford under inlet control is shown in Figure 15. Assuming the 

culvert has a submerged entrance, an equation for inlet control can be shown as (Haestad, 

1999): 

or 

J1 

D 
Q~; 

A(Do.s ~ 

L~v~ = 4 (D 
2.5 1 

1 

2 

+Y + f s,~' 

.v, _ Y — f ss 
D 

C 

o.s 

(26) 

(2~) 

where Q~; is the design flow for culvert under inlet control, D is the diameter of the culvert, 

yl is the depth from the inlet invert up to the water surface, or headwater depth, C and Y are 

constants that can be found in Haestad (1999) which are listed in Table B 1 of Appendix B, f s

is the slope correction factor where f s = +0.7 for mitered entrance and f s = -o. 5 for other 

entrance types, and S is the slope of the culvert. This equation can be used to develop D vs. 

Qvl plots for inlet control. 
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In order to solve Equation (27), the headwater has to be estimated using the following 

equation: 

yl = ~ + Co + hl (2s) 

where Co is the cover over the pipe and hl is the overflow depth before the inlet. It can be 

assumed that velocity head is neglected in most circumstances because it is a relatively small 

component of the total head, therefore h, = H , and H can be substituted into Equation (28). 

The value of H can be estimated from Barrett's research, when pipe cover is equal to ©zm~, 

using: 

H _ J'2 
0.6 

(29) 

where H is the upstream head above the raised structure and y2 is the overflow depth over the 

crossing. When 6-in is used for the design overflow depth, Equation (28) can be solved for 

the required headwater depth for inlet control. Once that is calculated, Equation (27) is used 

to develop a relationship between D and Q,,, for vented fords with inlet control. 

In situations where there are very shallow and narrow streams, the velocity head may 

need to be included in the equation such that 

y,=D+Co +H— (3 0~ 

Where g is force due to gravity and VI is the upstream velocity that can be estimated as 
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V, = Qe (31) 

or V, =  Qe (32) 
(D+Co +H}w 

Where Qe is the design flow and w is the width of the stream. 

Outlet Control Hydraulics 

Under outlet control barrel friction is the predominant head loss. Tail water 

conditions also have an important effect on culverts with outlet control flow. The entrance of 

a culvert can be above the water or submerged. When the inlet is submerged the barrel is 

completely full under outlet control. This implies that a larger size may be required for a 

culvert that is operating under inlet control as compared with outlet control. 

Vz/2g 

Energy Grade Line 

Y2

~ o C 0 

D Qw TW=D 
S 

Datum 

L 

Figure 16. Diagram for a vented ford under outlet control 

An example of outlet control is shown in Figure 16. With the assumptions that there 

is a submerged entrance, VI is equal to V2, the tailwater (TT~~ depth is equal to D, the inlet 

approach distance is also equal to D, yl is the streambed up to the water surface, HWo is the 
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outlet invert up to the headwater surface, L is the culvert width, S is the culvert slope, n is 

Manning's roughness coefficient, and Ke is a factor found in Haestad (1999) which is listed 

in Table B2 in Appendix B, the following equation can be written for outlet control {Haestad, 

1999; Gupta, 2001) 

' v2` v 2` ~Kv 2` 
HWo + 1 = T'W + 2 +  e 2 

~ 2g / 2g i ~ 2g / 

Recognizing that 

and 

and 

HWo = yl + LS 

D2~A3 = 
4 

R = - -s
P 

~ ~ 

n2V 2 (D+L)
~ 4~ 

2.22 R 3
~ ~ ~ ~ 

(33) 

(34) 

(35) 

(36) 

where R is the hydraulic radius, A3 is the cross sectional area, and P is the wetted perimeter, a 

new equation can be derived. Rearrangement of equations and substitution into Equation 

(3 3) gives the following: 

Qvo = 

~y, + LS — D~o.s

~ / 

Ke 

Zg 

~D2~ ~ 

~ 4 ~ 
~~ o.s 

n 2 ~D+L~ 
4 

i D~3 
2.22 —

~ ~ 4 / ~~ 

(3~) 
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where Q vo  is the design flow for a culvert under outlet control. This equation is used to 

develop D vs. Q vo  plots for vented fords under outlet control flow condition. 

S. 2. S. Design Curves 

Design curves (D vs. Q v ) are derived from culvert hydraulics and flow equations 

(Herr and Bossy, 1965; Normann et al., 1985, Haestad Methods, 1999; Gupta, 2001). These 

curves can be used to compare pipe sizing for inlet control and outlet control conditions. As 

mentioned earlier, Equations (27) and (3 7) can be used to find the relationship between 

culvert diameter and design flow for inlet and outlet control. Figures 17 through 28 show 

design curves generated in this research. These design curves represent inlet and outlet 

control for different types of submerged culverts placed at various slopes including mild, 

moderate, and steep sloping of the pipe. 

After analyzing the design curves for different styles of pipe, it was concluded that 

inlet control conditions require larger pipe size the majority of the time. There were cases 

where outlet control required pipe size equal to or slightly larger than the inlet control 

requirement, but this only seemed to happen when the culvert slope is mild. The general 

trend shows that as slope of the pipe increases, culvert size for inlet control becomes much 

greater than culvert size required for outlet control for the same design flow. When outlet 

control pipe size was larger than the inlet control size requirement, the difference was small 

and negligible. Therefore, the assumption that inlet control requires a larger pipe is valid and 

culvert design for vented fords can be simplified, since outlet control does not have to be 

checked. 
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5.2.6 Selection of Pipe 

After discharge through the pipe, Q,,, is determined from Equation (21), the number 

and size of pipes should be selected. Single pipe may be considered first. If a computed trial 

size is larger than the design height of LWSC or availability of pipe size, multiple culverts 

should be used. The design discharge flowing through each pipe is equal to the total 

discharge through the vent divided by the number of pipes. Pipe diameter can be determined 

for the design discharge with design curves (D vs. Qv) discussed earlier in this section. Other 

methods can be used to calculate pipe diameter as well, including those mentioned in the 

literature review. 

5.2.7. Vented Ford Design Procedure 

Once the design discharge is estimated, as discussed in section 4, design of a vented 

ford can be accomplished using the following steps: 

1. Assume the pipe cover, Co, is equal to ~zm~ and the design overtopping flow 

depth, y2 = y~, is equal to 6-in to meet LWSC design criteria. 

2. The overtopping design flow, Atop, can be calculated using either Equation (22), 

where I~ =y2/0.6, or Equation (25). Both equations give similar estimations. 

3 . Check to see if Ozm~ > 1 to meet pipe cover requirements using Equation (15). If 

Ozm~ < 1, depth should be increased to at least 1-f~. 

4. Calculate the design culvert flow, Qv, using Equation (21). 

5. The design culvert flow, Q,,, can be used to determine pipe size. Either design 
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curves for inlet control conditions can be used, as discussed in section 5, or other 

pipe sizing methods mentioned in the literature review may be utilized. 

6. The velocity through the culvert can be checked by dividing the culvert design 

flow by the culvert cross-sectional area. 

7. For the final design, the pipe exit velocity should not exceed 10 ft/s 

(Motayed et al. 1982b) and the cover over the pipes) should be at least 1-ft thick. 

5.3. Low Water Bridges 

Low water bridges are generally considered where design stream discharge is large, 

debris potential is high, or when there are sensitive stream conditions such that stream 

disturbance must be avoided. Once in place, there are different types of stream flow that are 

possible at low water bridges. These are the same types of flows which occur at vented fords 

including: 1) open channel flow during low flows, 2) possibility for pressure flow as flow 

depths increase, and 3) weir flow over the structure and pressure flow underneath during 

overtopping. The upstream and downstream edges of the bridge deck are usually smoothly 

rounded to enhance the efficiency of discharge over the slab during overtopping. 

Depending on the placement height of a low water bridge, the structure may cause 

changes in the stream width creating a channel transition at the crossing. According to 

Chaudhry (1993), the water depth decreases when the channel width constricts if the 

upstream flow is subcritical and depth increases if the flow upstream of the constriction is 

supercritical. Similar to a transition in the streambed elevation discussed in section 5.1, there 

is an upper limit, B~, for the amount that a channel can be contracted without altering 

upstream flow. At this limit, critical flow conditions occur for stream flow passing by the 
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structure. The following steps can be used to find the limiting width, .8~. First, critical flow 

depth for the design discharge can be calculated using 

Next, 

2~ 
V2~ 

3 ~ 2g ~ 

3 
q = ~'~ 

~3s) 

(39) 

is derived from Equation (13) where q is the unit discharge corresponding to the critical 

depth, y~. Finally, the limiting width can be computed using 

B~ 
Qa (ao) 
q 

where B~ is the limiting width, Qe is the design discharge, and q is the unit discharge 

calculated from Equation (39). Figures 29 and 30 show a plan and profile view respectively 

for a low water bridge that constricts a stream to the limiting width, B~. 

Low water bridge 

Qe' yl Bo y2 = y~ , 

1 

T 

B = B~ 

Figure 29. Plan view of a low water bridge causing critical flow conditions 
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Low water bridge 
r 

B= B c 

Figure 3 0. Profile view of a low water bridge causing critical flow conditions 

If stream width is constricted by the addition of a low water bridge with length B, 

where B is greater than the limiting width, the transitional stream depth can be determined by 

rearranging Equation (11) giving 

1 2gw2 2

Y2 2 Q 2
e 

_ / 2 ~ 
~e 

~ 2~12y12
y, + — y2 (41) 

where w1 = Bo, is the width of the undisturbed channel and w2 = B, the constricted width at 

the crossing. Equation (41) is used to determine the depth of flow at the crossing, y2, for a 

low water bridge with width B. This equation is solved using a mathematical equation solver 

or trial and error methods. 

Any constriction of the channel width beyond the upper limit, B~, causes choking 

conditions for the upstream water. In this situation, the backwater depth should be checked 

to assure that existing stream banks can contain increased water levels upstream. Discussed 

by Motayed et al. (1982b), depth upstream from the bridge can be computed by adding the 
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flow depth without the bridge and the height of the backwater created by the bridge. The 

following equation can be used for a backwater approximation: 

h~ = CD 
~ A ~iV 2 ~ 

S 
CAI ~~ 2g~ 

(42) 

Where h' =backwater flow depth, CD =drag coefficient (CD = 2 for LWSCs), AS =projected 

area of slab, pier, and abutments on a plane perpendicular to flow, A ~ = cross-sectional area 

of upstream flow, and V =average velocity of flow. 

S. 3.1. Low Water Bridge Design ~'rocedure 

The design of a low water bridge starts with estimation of design discharge as 

described in section 4. The structure height should be chosen so that there is no overtopping 

for the design flow, to reduce safety concerns, i.e. the bottom of the bridge slab is slightly 

higher than the surface water elevation at the crossing for the design flow. after finding the 

design flow, Qe, the following steps can be used for design: 

1. If upstream design flow is supercritical: 

a. The length of low water bridge, B, should equal the width of the channel, Bo, 

so that y2 = yl . Calculate flow depth, yl, for the design discharge using 

Equation (7) or (8). 

2. If the upstream flow is subcritical: 

a. The length of low water bridge, B, may be equal to the width of the channel, 

Bo, so that y2 = yl. Calculate flow depth, yl, for the design discharge using 

Equation (7) or (8), or 
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b. The bridge length, B, may be reduced if needed. 

• It is recommended that reduced bridge length should equal the limiting 

constriction width for the stream flow, B = B~, so that flow depth y2 = y~. 

B~ is calculated using Equation (40). 

• If B~ < B < Bo, Equation (41) can be used to determine flow depth, y2. 

• If B < B~, upstream flow is altered and backwater elevation should be 

checked using Equation (42) to make sure the water surface elevation 

stays within the existing stream banks. 
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6. DISCUSSION AND CONCLUSIONS 

LWSCs are economic alternatives for bridge replacement and new stream crossing 

projects on low volume roads. They are structures that can effectively be used in many 

different regions throughout the United States. Careful planning and detailed design are 

important in LWSC project development. Hydrologic and hydraulic analyses and designs 

have been conducted in this study, as they .are critical components of the LWSC design 

process. The objective of developing a systematic approach for hydrologic and hydraulic 

design has been achieved by extensive review of previous studies, examining feedback from 

the on-line survey, and the investigation and improvement of existing design methodologies 

and techniques for LWSC hydrologic and hydraulic design. 

In hydrologic design, the conventional method of using instantaneous annual 

maximum flows was compared to a design method based on daily flow data and flow-

duration curves. The conventional method establishes relationships between design 

frequency and design peak flow. The advantage is the availability of data at gaged streams 

and ability to use USGS regression equations, which are available for locations throughout 

the nation, to estimate flow data at ungaged streams. Unfortunately, duration of flooding 

cannot be determined with this method, so it is not the best choice for LWSC design. 

In contrast, flow-duration curves developed with daily flow data can be used to 

determine the percent of time in a year that a design flow is equaled or exceeded. The 

information obtained from the curves, including flow exceedence frequency and flood 

durations, is more suitable for LWSC design since acceptable duration of road closure during 

a given year can be considered. The only drawback is that when flow data are not available, 
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regression equations need to be developed from available streamflow--_data coming from 

gaged sites that have watersheds with similar geophysical conditions. 

The design discharge calculated in hydrologic design is required for the hydraulic 

design for each of the three types of LWSCs. The nature of flow in streams is also important 

for each design. Selection of structure types and design considerations are dependent on 

whether streamflow is at subcritical or supercritical state. 

Unvented ford design is based on the depth and state of flow for the design discharge. 

It is concluded that the overtopping flow depth on a raised unvented ford is influenced by 

LWSC height. Analyses and results show that hydraulic design for raised unvented fords can 

be simplified by setting the LWSC height to a maximum level, ~1zm~, where the overtopping 

flow is equal to the design flow critical depth. When this is assumed, hydraulic principles or 

empirical equations developed from laboratory experiments, which have been validated for 

specific conditions, can be used for design. 

Vented ford design is similar to traditional culvert design and can be accomplished 

using many available methods. The first step is determining the overtopping flow, based on 

allowable overtopping depth, and culvert flow which combine to equal the design discharge. 

The overtopping flow is estimated with methods discussed for raised unvented ford design in 

which hydraulic principles or empirical equations can be used. The remaining flow, equal to 

culvert flow, is used for culvert pipe selection and sizing in which traditional methods are 

acceptable for design. In this study it was determined that inlet control design for culverts 

results with larger pipe size than outlet control design in most cases. Therefore, the culvert 

sizing process is simplified because outlet control design does not have to be checked. 
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Depending on the length and height of a low water bridge, alteration of the stream 

channel may occur. Disturbances to the width of a stream channel affect flow depths that are 

used to determine bridge placement height. A relationship was found between changes in 

channel width and change of flow depth. After analyzing these findings it was concluded 

that low water bridges should be placed at a height where channel disturbance can be 

avoided. If a bridge design is uneconomical due to its long length, a shorter structure which 

could cause stream width constriction may need to be considered. Under subcritical flow 

conditions, reducing the length of the structure, causing some constriction of the channel, 

could lead to a lower flow depth at the bridge. It is suggested that the length be limited to 

minimum channel width, B~, where critical flow conditions occur at the crossing. 

The hydrologic and hydraulic design procedures in this study have been evaluated. It 

is recommended that flow-duration curves or regression equations be developed for all 

ungaged streams in each state so that daily flow data can be utilized for LWSC projects. 

Regional regression equations that were developed for Iowa have been useful for the design 

of LWSCs. It would be necessary for other states to have the same type of resources 

available for future LWSC designs. With this information, more reasonable design flows can 

be estimated and the LWSC design procedures described in this report can be used 

effectively. 
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7. DESIGN EXAMPLES 

~, i. r.a~illple 1 

Data
Design discharge: 
Stream slope: 
Streambed roughness: 
Stream width: 

Qe = 3O CfS 
S = 0.005 
n = 0.04 
w = 15.0 ft

Design 

1. Determine if the flow is subcritical or supercritical: 

Depth of design flow is calculated using Equation (8), y1= 0.90-f~. 

Froude number is calculated using Equation (3), Fr = 0.41. 

Fr < 1 and flow is subcritical. 

2. Analyze the depth of design flow, yl: 

y~ > 6.0-in, therefore a raised unvented ford is needed. 

3. Analyze the critical flow depth, y~: 
Critical flow depth is calculated using Equation (13), y~ = 6-in. 

y~ = 6.0-in and meets criteria, therefore a raised unvented ford can be used. 

4. Determine the height for the raised unvented ford: 

Structure height is calculated using Equation (15), ~m~ = 0.23-f~. 

The raised unvented ford can be constructed 0.23-ft above the streambed to allow 

a 6.0-in overtopping depth at design flow. If the unvented ford is raised to a greater 

height, overtopping flow will be less than 6-in for design flow and the upstream flow 

will be altered. 
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7,2. Ezample 2 

Data
Waterbody: Keg Creek 
Project Site: Iowa, Region II 
Watershed Area: A = 3 0.4 mil
Stream slope: S = 0.012 
Streambed roughness: n = 0.04 
Stream width: w = 3 0.0 ft

Design 

1. Estimate design flow, Qe: 

Using 2% exceedence time for Region II in Iowa, Equation (1) is used to find Qe. 

Table 5 gives: a = 6.78, b = .0.90, and 

Qe = 147.0 cfs 

2. Determine if the flow is subcritical or supercritical: 

Depth of design flow is calculated using Equation (8), yl = 1.21-ft. 

Fronde number is calculated using Equation (3), Fr = 0.65. 

Fr < 1 and flow is subcritical. 

3. Analyze the depth of design flow, y,: 

yl > 6.0-in, therefore a raised unvented ford is considered. 

4. Analyze the critical flow depth, y~: 
Critical flow depth is calculated using Equation (13 ), y~ = 0.91-f~. 

y~ > 6.0-in, therefore a vented ford is needed. 
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5. Determine the overtopping flow for a vented ford: 

Assume pipe cover depth is Azm~, y2 = y~, and H = y2/0.6 

Equation (22) gives Atop = 58-cfs and Equation (25) gives Atop = 60-cfs. 

The results are similar and a decision is made to use Qtop = 58-cfs. 

6. Determine the culvert flow: 

Design flow for the culverts) is calculated using Equation (21), Qv = 89-cfs. 

This flow can be used for pipe selection and sizing. 

7. Determine culvert pipe to use: 

A decision is made to use corrugated metal pipe with slope of 0.015. 

Figure 27 is used to determine pipe size for the culvert design flow, Qv. 

Culvert diameter, D, for 1 pipe gives D = 4.0-f~, or 

Culvert diameter, D, for 4 pipes gives D = 1.0-f~, which is selected. 

8. Check velocity, V 

The velocity is equal to culvert design flow divided by pipe cross-sectional area. 

V = 7-ft/s, and V > 10-f~/s, so the design is good. 

9. Check pipe cover, t~zm~: 

The depth of pipe cover is calculated using Equation (15), dzm~ = 0.05-f~. 

The pipe cover must be increased to at least 1.0-f~ to meet the minimum requirement. 

In raising the pipe cover to a depth larger than ~zm~, the overflow depth will be 

smaller than 6.0-in for the design flow. 
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7.3. Example 3 

Data
Waterbody: 
Project Site: 
Watershed Area: 
Stream slope: 
Streambed roughness: 
Stream width: 
USGS identification: 

North Fish Creek 
Ba~eld County, Wisconsin 
A = 65.4 mil
S = 0.005 
n = 0.04 
w = 38.0 ft
040263491 

Design 

1. Estimate design flow, Qe: 

Daily streamflow data are obtained from the U.S. Geological Survey which is 

available at the website ~~Jti~j~~f.usc~s.ol-g. The data are arranged into class intervals of 

ascending order. The percent of time during which flow was equal to or greater than 

each class interval is determined. The information is graphically presented in 

Figure 31 as aflow-duration curve for North Fish Creek. 
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Figure 31. Flow duration curve for North Fish Creek in Wisconsin 
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At 2 percent exceedence time, Figure 31 gives Qe = 375-cfs. 

2. Determine if the flow is subcritical or supercritical: 

Depth of design flow is calculated using Equation (S), yl = 2.32-ft. 

Fronde number is calculated using Equation (3), Fr = 0.49. 

Fr < 1 and flow is subcritical. 

3. Analyze the depth of design flow, yl: 

yl > 6.0-in, therefore a raised urivented ford is considered. 

4. Analyze the critical flow depth, y~: 

Critical flow depth is calculated using Equation (13 ), y~ = 1.45-f~. 

y~ > 6.0-in, therefore a vented ford is needed. 

5. Determine the overtopping flow for a vented ford: 

Assume pipe cover depth is ~ rn~, y2 = y~, and H = y2/0.6 

Equation (22) gives Qtop = 71-cfs and Equation (25) gives Qtop = 76-cfs. 

The results are similar and a decision is made to use Atop = 71-cfs. 

6. Determine the culvert flow: 

Design flow for the culverts) is calculated using Equation (21), Q,, = 304-cfs. 

This flow can be used for pipe selection and sizing. 

7. Determine culvert pipe to use: 

Use circular concrete pipe with slope of 0.015. 

Figure 18 is used to determine pipe size for the culvert design flow, Q,,. 

Culvert diameter, D, for 1 pipe gives D = 6.0-f~, or 

Culvert diameter, D, for 4 pipes gives D = 1.5-i~. 
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A low water bridge should be used if the pipe size/quantity is too large or if the 

vented ford design is uneconomical. 

8. Determine low water bridge placement: 

A shorter structure is desirable, which would alter the channel width. 

The flow is subcritical and the limiting width, B~, is chosen for design. 

The limiting width is calculated using Equation (40), B~ = 3 7.8-f~ 

The limiting width is approximately the same as existing channel width. 

If this length of bridge is used, it would have to be at least 2.0- f~. above the 

streambed. 

9. Compare the vented ford design to the low water bridge design: 

Cost estimation is generally a good method for comparison. 
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APPENDIX A 

ON-LINE LWSC SURVEY 
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Survey on the Use of Low Water Stream Crossings (2002) 

Iowa State University 
Depx of Civil and Construction Engineering 

If you have any questions or if you wish to send anything to us please contact: 

Roy R. Gu 
Dept. of Civil and Construction Engineering 

Iowa State University 
Ames, IA 50011 

roygu@iastate.edu 

Please complete the information for the person filling out the questionnaire or someone we 
can contact should we re ~ uire further information. 

Name 

Your state/county/a; enc : I 

Your position/title:  

E-mail: 

Phone:  

Fax: . 

could we contact you if we require additional information? 
.. 
:~'....... ~~Yes 
Jam::= 

~~-------~=No 

Are you interested in receiving a copy of the executive summary of the design manual? 
JJ^i•: 

-s-----..:Yes 
~::: 

~~.._..__~No 

1. If your state/county/agency has any low water stream crossings (LWSCs), how many on 
each of the following roads? 
Road surface type: 

Primitive/field access (dirt): ~~ 

Aggregate-surfaced (gravel)  

Paved (or asphalt) road 
Other (please describe): 
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2. Please list the number of LWSCs in your state/county/agency, average cost, road 
type/service level, and average daily traffic (ADT) count. 

LWSC Type 

.~:; Road Type / :::Average Cost ; . Number <r Service $ :; Level 

Fords (no pipes) 

Vented Fords (with 
pipes) 

Low Bridges 
r. Sr 

3 ADT Count
(vehicle/day) 

Other:    i f 

3. Based on your experience with LWSCs, please indicate factors considered and specify 
constraints in choosing and designin :.... 

~~'~'Average Daily Traffic (AD~~ 
~~ ' 
....:> <':(~vert~nnin~ frerniencv• .........: Overtopping frequency . 

ti ~ .........:Overtopping flow_ depth_ ______________ 
...._...::Maximum cost. 

W S C structures. 

vehicles or less 

 times/days per year or less 
r 

inches or less 

~~~`'~~Cost saving compared to bridges/culverts: ~~% or more 

":'Drainage areas: 

''"Stream-flow discharge: .  cfs 

~~~"`Stream-bank height: ~ ft or less 

~'`~`' ~~ft or lon er :::::::;::::.Approach distance, i.e. si ht distance for warning signs:   g 

~~'~'~Streambed slope: l % or milder 

>~"'Vertical curve at dip (cross slope, i.e. a r~ pp oach grade): ~~% or less 

acres 

~:::::~::~~~-Ieight of crossing above streambed: 

'~._.`~:~:=~~Downstream slope of crossing structure:
"'~ ~ ~~ ........extra time for alternate routes:  

........::Average duration of traffic interruption: .....::ti::. 

 ~ _or less 

  or less 

minutes or less 

 hours or less 

 miles :':::. :~~~7Vlaximum distance from maintenance facilities: 

:':~........~Other factors and constraints: 
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4. If your state/county/agency has constructed any LWSCs, what did you use as design 
standards/guidelines? 

a. Existing references (please list or provide copy) or 

b. In-house design (please describe specifications or provide copy) 

5. In your experience with LWSCs, 

a. How have they performed or what has been their integrity? 

b. What problems, if any, did you have with LWSCs? ~"'` 
....: ~::::~: Destroyed by erosion .:...; :-~'''`` . 

........... Too frequent overtopping 
Other: 

6. If your state/county/agency is going to build (more) LWSCs, 

a. What pavement treatment and thickness would be specified? 

b. Would you use inlet and outlet protection and erosion control? 
:.:~:: :~ ..::::.:Yes 

~: :t 
......::NO 

Type of protection or method of erosion control: 

c. What erosion and sediment control procedures would you use during the LWSC 
construction phase? 

d. What marking and signing for traffic safety does your agency require? 

e. What maintenance of LWSC structures (including scour prevention) would be required? 

f. What data would you use for hydrologic analysis, ~::: 
'...... ~~Dai1y flows 
~``~~~= ........::Annual peak flows 

g. What methods of hydrologic analysis does your agency employ? 
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APPENDIX B 

CONSTANTS FOR EQUATIONS DEVELOPED IN HAESTED (1999) 
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Table B 1. List of inlet control submerged factors C and Y (Haestad, 1999) 

SHAPE AND 
MATERIAL 

INLET EDGE 
DESCRIPTION 

SUBMERGED 
C Y

Circular Square edge w1 headwall 0.0398 0.67 
Concrete Groove end w/ headwall 0.0292 0.74 

Groove end projecting 0.0317 0.69 
Circular Headwall 0.0379 0.69 

CMP Mitered to slope 0.0463 0.75 
Projecting 0.0553 0.54 

Circular Beveled ring, 45°bevels 0.0300 0.74 
Beveled ring, 33.7° bevels 0.0243 0.83 

Rectangular 30° to 75° wingwall flares 0.0385 0.81 
Box 90° and 15° wingwall flares 0.0400 0.80 

0° wingwall flares 0.0423 0.82 
Rectangular 45°wingwall flare d=.043 0.0309 0.80 

Box 18° to 33.7° wingwall flare d=.083 0.0249 0.83 
Rectangular 90° headwall w/ 3/4" chamfers 0.037 0.79 

Box 90° headwall w/ 45°bevels 0.0314 0.82 
90° headwall w/ 33.7° bevels 0.0252 0.865 

Rectangular 3/4" chamfers; 45° skewed headwall 0.0402 0.73 
Box 314" chamfers; 30° skewed headwall 0.0425 0.705 

3/4" chamfers; I S° skewed headwall 0.04505 0.68 
45°bevels; 10°-45° skewed headwall 0.032? 0.75 

Rectangular 45°non-offset wingwall flares 0.0339 0.803 
Box 18.4° non-offset wingwall flares 0.0361 0.806 

314" Chamfers 18.4° non-offset wingwall flares, 
30° skewed barrel 

0.0386 0.71 

Rectangular 45°wingwall flares- offset 0.0302 0.835 
Box 33.7° wingwall flares- offset 0.0252 0.881 

Top Bevels 18.4° wingwall flares- offset 0.0227 0.887 
C M Boxes 90° headwall 0.0379 0.69 

Thick wall projecting 0.0419 0.64 
Thin wall projecting 0.0496 0.57 

Horizontal Square edge w/headwall 0.0398 0.67 
Ellipse Groove end w/ headwall 0.0292 0.74 

Concrete Groove end projecting 0.0317 0.69 
Vertical Square edge w/ headwall 0.0398 0.67 
Ellipse Groove end w/ headwall 0.0292 0.74 

Concrete Groove end projecting 0.0317 0.69 
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Table B 1. (Continued) 

Pipe Arch 
18" Corner 
Radius CM 

90° headwall 
Mitered to slope 
Projecting 

0.0379 
0.0463 
0.0496 

0.69 ~` 
0.75 
0.57 

Pipe Arch Projecting 0.0487 0.~5 
18" Corner No bevels 0.0361 0.66 
Radius CM 33.7° bevels 0.0264 0.75 
Pipe Arch Projecting 0.0487 0.55 
31" Corner No bevels 0.0361 0.66 
Radius CM 33.7° bevels 0.0264 0.75 

90° headwall 0.0379 0.69 
Arch CM Mitered to slope 0.0463 0.75 

Thin wall projecting 0.0496 0.57 
Circular Smooth tapered inlet throat 0.0196 0.89 

Rough tapered inlet throat 0.0289 0.90. 
Elliptical Tapered inlet-beveled edges 0.0368 0.83 
Inlet Face Tapered inlet-square edges 0.0478 0.8 

Tapered inlet-thin edge projecting 0.0598 0.75 
Rectangular Tapered inlet throat 0.0179 0.97 

Rectangular Side tapered-less favorable edges 0.0466 0.85 
Concrete Side tapered-more favorable edges 0.0378 0.87 

Rectangular Slope tapered-less favorable edges 0.046b 0.65 
Concrete Slope tapered-more favorable edges 0.0378 0.71 
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Table B2. List of outlet control submerged factor Ke (Haestad, 1999) 

CULVERT TYPE ENTRANCE T~'PE AND DESCRIPTION LOSS COEFFICIENT, Ke 
Pipe, Concrete Projecting fi-om fill, socket end (groove end), :~x .,~;;, ;,_ 0.2 _ 

Projecting from fi ll, square cut end 0.~ 
Headwall or Headwall with wingwalls 

Socket end of pipe (groove end) 0.2 
Square edge 0.5 
Rounded (radius= 1/12D) k_~ ~ ~___, ,, 0 2 .-~° ~~, 

Mitered to conform to fill slope U.~ 
End-Section conforming to fill slope, ~ <`,~' 

_ 
~~~ ~ 0 5 

~~~~x„ 
`~. k.._~_.. ~ . 

Beveled edges. 33.,0 or 4~° be~~els 0.2 
Side or slope-tapered inlet 0.2 

Pipe or Pipe Arch Projecting from fill (no headwall) 0.9 
Corrugated Metal Headwall or headwall and wingwalls square-edge 

_ _ 
0.5 

Mitered to conform to fill slope, paved or 
unpaved _ . ...,~.K ,~..,.,..~.--~-

~ 
0.? 

End-Section conforming to fill slope ~ OS 
Beveled edges. 33.x° or -1~° bevels . ~.~Q.. . . ,.. .,.._: 0.2 ,._.,: ,... ... 
Side- or slope-tapered inlet 0.2 

Box, Reinforced Headwall parallel to embankment (no wingwalls) 
Concrete Square-edged on 3 edges 0.5 

Rounded on 3 edges to radius of 1/12 barrel 
dimension, or beveled edges on 3 sides 

0.2 

Wingwalls at 30° to 75° to barrel 
Square-edged at crown 0.4 
Crown edge rounded to radius of 1/12 barrel 0.2 
dimension, or beveled top edge , . _-.~.~-.. ~.. ~ ,_ ... .~ __.,.. _.s.~._.~.. , . ._.. . .. 

Wingwall at 10° to 25° to barrel 
Square-edged at crown 0.5 

VVingwalls parallel (extension of sides) 
Square-edged at crown .,. , _ - _,~,~, ~;; ;; ~ x.. ~~a~ 0.7 

Side- or slope-tapered inlet 0.2 
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